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Agglomerated multigrid on hybrid unstructured meshes
for compressible �ow
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SUMMARY

A review of the applicability of the agglomerated multigrid solution acceleration approach for the
simulation of compressible �ows is presented. The �ow descriptions are wide ranging, spanning from
inviscid to turbulent and from steady state to transient. The spatial discretization is performed by
a node-centred �nite volume scheme, with explicit addition of fourth-order arti�cial dissipation. The
improved performance resulting from the introduction of unstructured hybrid meshes is illustrated. For
time-dependent �ows involving moving geometries, a second order geometrically conservative scheme
is applied, with multigrid accelerated implicit timestepping. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In industry, steady inviscid compressible �ow calculations on full aircraft con�gurations
are now becoming routine. There, is however, a need to improve on the methods at use
in present for more complicated calculations involving viscous e�ects and time dependency.
Viscous problems often involve meshes of tens of millions of elements which are highly
stretched close to wall surfaces while explicit transient calculations often require large number
of timesteps due to the stability limit of the numerical scheme. These factors result in slow
convergence and limits the practical use of such computations.
The current approach addresses these problems by applying a multigrid acceleration pro-

cedure, known for its excellent convergence behaviour on inviscid problems at a minimal
increase in memory usage. Geometric multigrid does however require the construction of sev-
eral meshes of an a priori speci�ed decreasing complexity, which often proves to be a di�cult
task for complex problems. This issue has prompted research into automatically creating the
set of meshes from one original, created in an unstructured mesh generator [1, 2].
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The current approach uses the �nest mesh as a starting point, creating the coarser meshes
by an agglomeration process [3]. This method was selected for its robustness and the fact that
it generates nested meshes. The solver used is a vertex-centred �nite volume method with
explicit addition of fourth-order dissipation and is fully parallelized.
For additional reduction in computation time on viscous �ows, the use of hybrid meshes is

investigated. Quadrilaterals are introduced in two-dimensional meshes, and pyramids, prisms
and hexahedra are generated in three dimensions. The creation of these elements is performed
by merging elements created in a simplex unstructured mesh generator in several layers close
to wall boundaries where the original mesh is created by an advancing layer scheme [4].
For a viscous three-dimensional mesh, the majority of the elements are situated close to wall
boundaries and this approach therefore yields a signi�cant decrease in the number of mesh
edges in the problem.
For transient problems, implicit timestepping is used. This results in a reduction of the

number of timesteps required for an accurate solution, and the reduction in solution time is
often of more than an order of magnitude. The scheme also allows for geometry movement
where an ALE approach is used [5]. For problems involving relatively small movement a
mesh movement technique is applied. If there are regions of large mesh movement, the mesh
movement technique may produce meshes of poor quality, such regions are detected and local
remeshing is performed.

2. NUMERICAL SCHEME

The time-dependent, Favre-averaged, compressible Navier–Stokes equations in integral form
on a three-dimensional Cartesian domain �(t)⊂R3, with surface @�, can be expressed as

d
dt

∫
�
Ui dx+

∫
@�
(Fij −Uivj)nj dx=

∫
@�
Gijnj dx (1)

where nj is the outward unit normal vector to @�. The domain is allowed to be time de-
pendent and the velocity of the domain boundary is denoted by vj. The unknown vector of
the conservative variables is given by Ui while the inviscid and viscous �ux tensors are de-
noted by Fij and Gij , respectively. To close this system for turbulent �ow calculations, the
Spalart–Allmaras turbulence model [6] is applied.

2.1. Discretization procedure

When an edge based representation of the mesh is employed, a typical integral over the
boundary �I of the control volume surrounding node I is computed using the approximation∫

�I
Hjnj dS ≈

∑
J

1
2
CjIJ (H

j
I +H

j
J ) + BI (2)

for a general Hj. Here, the summation extends over all nodes J that are connected to node
I , Hj

I is the value of H
j at node I and the edge coe�cients are de�ned as

CjIJ =
∑
k
Akn

j
k (3)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:593–603



AGGLOMERATED MULTIGRID ON HYBRID UNSTRUCTURED MESHES 595

The summation now extends over all control volume interfaces k that intersect the edge
between nodes I and J , Ak is the length in 2D and the area in 3D of interface k and n

j
k is the

unit outward normal to this interface. The boundary term, BI , is only non-zero when node I
is located on the boundary of the computational domain. In this case,

BI =
∑
J

1
4
Dj
IJ (3H

j
I +H

j
J ) (4)

where the summation extends over all boundary nodes, J , connected to node I by an edge
on the boundary and

Dj
IJ =Aen

j
e (5)

Here Ae is the area of the control volume face associated with the edge e between I and J ,
which simpli�es to one-half of the length of the edge in two dimensions, and nje is the unit
outward normal of the control volume. Volume integrals are performed under the assumption
of a constant integrand within the control volume. For a simplex mesh, these procedures
produce a set of discrete equations that are equivalent to a mass-lumped linear �nite element
Galerkin scheme at interior nodes.
On hybrid meshes, the dual mesh construction is performed using a modi�ed median-dual

approach. The merging of tetrahedra creates quadrilateral faces that are in general not planar.
This means that the usual de�nition of face centroid as the co-ordinate average is invalid.
Instead the face is de�ned by the two triangular faces originating from the simplex mesh and
the midpoint of the interface edge between the two faces is used as face centroid. In addition,
the element centroids on the prisms, pyramids and hexahedra are chosen in a way to guarantee
that they are contained within the element and that the dual mesh de�nition coincides with the
median-dual for a regular element [7]. For simplex meshes the normal median-dual approach
is used.
Stabilization and discontinuity capturing are achieved by replacing the physical convective

�ux function over each edge by a consistent numerical �ux function of the JST type [8, 9].
For stabilisation, the fourth-order di�usion operator is constructed in a form that preserves a
linear �eld [2], while discontinuity capturing is realized by the addition of a pressure-switched
second-order di�usion.

2.2. Agglomerated multigrid

To accelerate the convergence of the method, the FAS multigrid scheme of Brandt [10] is
applied with local timestepping and explicit three-stage Runge–Kutta relaxation. In the current
implementation, a linear restriction mapping is used, while point injection is applied for the
prolongation mapping.
The edge-based formulation provides a method for merging control volumes at a given

grid level, thus automatically creating a nested coarser mesh for use in the multigrid
procedure [3]. This approach has proven to be very robust and e�cient, in addition to
producing nested meshes which simplify the prolongation and restriction operations.
The procedure itself is also very fast, typically generating the mesh cascade in the time
it takes to perform 1–3 multigrid cycles. The agglomeration scheme can be summarized
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Figure 1. The agglomeration procedure begins with selecting a seed node. The selection of this node
is either performed randomly or by connectivity criteria. The mesh is shown in solid lines while the

dashed lines denote the dual mesh.

Figure 2. For homogenous agglomeration, every node connected to the seed that have not yet been
agglomerated, are associated with the seed and the control volumes are merged. The resulting dual

is shown in bold dashed lines.

as follows:

1. A seed node is selected. Initially, the seed node is taken from the list of boundary nodes.
When no boundary nodes remain, the seed node is selected in a random manner from
the internal nodes in the mesh.

2. The nodes connected to the seed node by edges that have not already been merged are
grouped together creating a supernode.

3. When the above procedure is completed for all nodes, internal edges in the supernodes
are deleted and edges bordering the same two supernodes are merged into superedges.
This is done by adding the coe�cients de�ned in (3) of the merged edges. In a similar
way, the boundary coe�cients de�ned by (5) are added.

Directional agglomeration is used on highly stretched meshes by restricting merging to
directions with large edge coe�cients. This is done with the objective of enhancing the
stability and convergence rate of the scheme [1]. The agglomeration scheme is illustrated in
Figures 1–4.

2.3. Time-accurate calculations

When time accuracy is desired, a second order time discretization is applied to the time term
appearing in the governing equations. The time term is treated as a source for the steady-state
governing equations, and this system is solved in a similar fashion to steady-state calculations.
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Figure 3. Edges internal to an agglomerated domain are deleted and edges spanning between the same
two agglomerated domains are combined into one edge by summing the edge coe�cients.

Figure 4. For anisotropic meshes, directional agglomeration is performed where merging of nodes is
only carried out in the direction of large edge coe�cients.

In this way, the timestep can be selected from accuracy considerations only, without taking
into account stability of the timestepping. It also allows the use of convergence acceleration
and local timestepping for the subiterations of each timestep.
The formulation presented allows for time-dependent control volume de�nitions which may

be necessary if the geometry in consideration is moving in time. The surface velocities of the
control volumes are selected in a way to ensure the satisfaction of the geometric conservation
law [5]. The movement of the mesh is performed by the spring analogy method [11] where the
outer mesh boundary is held �xed and the edges in the mesh are behaving as springs when
the geometry is altered. This approach retains the connectivity of the mesh and produces
meshes of high quality for signi�cant mesh movement. In some cases however, the mesh
movement procedure can produce regions of low mesh quality. This may, for example, occur
if the geometry consists of several objects that are moving in relation with each other, such
as for store separation. When this occurs, the program removes the collection of low-quality
elements in the mesh and performs a local remeshing.

3. NUMERICAL EXAMPLES

A set of numerical examples are included to illustrate the approach. The computations in-
clude an inviscid calculation on a complicated aeroplane geometry, viscous calculations on
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Figure 5. Pressure contours on surface for inviscid F16 calculation.

Figure 6. The convergence for the multigrid solver on the inviscid F16 calculation.
The solver could not produce a true steady-state solution for this problem due to

shedding behind the stores of the aircraft.

an aerofoil and a wing, and a time-dependent deforming mesh calculation on an aeroplane
con�guration.

3.1. Inviscid �ow over F16 with full stores

As an example of a typical industrial application that can be e�ciently solved with the
computer resources available today, an inviscid calculation on an F16 geometry is included.
The Mach number used is 0:9 and the angle of attack is 5:5. The calculation was performed
in parallel using eight partitions. The wall-clock time required for the calculation was around
2 h, a speedup of over 20 compared to a single-grid parallel solver with the same number
of partitions. A plot of the pressure calculated on the surface is shown in Figure 5. The
convergence curves of the multigrid accelerated procedure and for a single-grid solver are
shown in Figure 6. The surface de�nition of the F16 aircraft was generously provided by
EADS.
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Figure 7. Mach �eld for RAE2822 example.

Figure 8. Pressure coe�cient on surface for RAE2822 example.

3.2. Turbulent �ow over RAE2822 aerofoil

Turbulent transonic �ow around the RAE2822 aerofoil is considered. The Mach number is
0:73, Re=6:5×106 and �=2:79. The mesh used is re�ned in the shock region and contains
71 319 triangular elements and the �rst mesh layer from the aerofoil surface is placed at
2:5×10−6 times the cord distance from the wall. A plot of the Mach �eld is given in Figure 7
and a comparison between computed and experimental surface pressure coe�cients is shown
in Figure 8. A comparison between the convergence for the multigrid scheme and a single-
grid solver is shown in Figure 9. The multigrid speedup to engineering accuracy compared
to a single-grid solver in this case is over 12.

3.3. Laminar �ow over ONERA M6 wing

This example considers laminar �ow over an ONERA M6 wing at a mid-chord-based Reynolds
number of 1:0×106. The angle of attack is 3:0 and the Mach number is 0:5. The testcase was
run on three di�erent meshes; two di�erent hybrid con�gurations and a regular unstructured
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Figure 9. Convergence curves for RAE2822 example.

Figure 10. Comparison of pressure coe�cient at �=0:44 on the ONERA
M6 wing testcase for various mesh types.

tetrahedral mesh. The tetrahedral mesh consists of 594 022 elements and 705 883 edges. The
�rst hybrid mesh consists of 193 910 tetrahedra, 250 pyramids, 133 204 prisms and 505 506
edges. The second hybrid mesh consists of 191 822 tetrahedra, 3541 pyramids, 70662 prisms
and 34049 hexahedra which adds up to 477 404 edges. The nodal structure in the three meshes
are identical and all meshes have 103 168 nodes. Figure 10 shows a comparison of the surface
pressure at wing station �=0:44 for the meshes used and with the results of Frink [12]. In
Figure 11 the convergence curves of the meshes used are shown using a �ve grid multigrid
cycle scheme, and for the tetrahedral mesh using a one-grid procedure. Figure 12 shows the
convergence history for the wing lift coe�cient. There was little di�erence between the two
hybrid meshes for this testcase, the solution process on both required about 60% of that
required for the tetrahedral mesh, with a total speedup of around 10 compared to a single
grid solver.
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Figure 11. Convergence curves for laminar ONERA M6 wing testcase.

Figure 12. Plot of lift coe�cient vs cycles for various mesh con�gurations
for the ONERA M6 wing testcase.

3.4. Transient �ow over oscillating B60 con�guration

The concluding example is included to illustrate the time-accurate implicit solution procedure.
A cyclic movement is prescribed on the wings and engines on a B60 con�guration with
freestream Mach number of 0:809 and an angle of attack of 2:738. The wing movement is
piecewise linear, with a pitch amplitude of one degree and heave amplitude of 2% of the
wing semispan at the wing mid-point, and a pitch amplitude of 5◦ and heave of 6:5% at the
wingtip. The reduced frequency of the movement is 0:0025 and 32 timesteps were used on
each cycle. Two plots of the pressure distribution of the surface at di�erent times is given in
Figure 13. The mesh used contained 775 877 tetrahedral elements, Figure 14. No remeshing
was required for this example. A plot of the lift polar calculated is shown in Figure 15.
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Figure 13. Snapshots of the surface pressure distributions of the transient B60 calculation.

Figure 14. Surface mesh used in transient B60 calculation.

Figure 15. Lift vs normalized de�ection angle for transient B60 calculation.
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For this reduced frequency, the calculation time required for an explicit timestepping scheme
would be a factor of 12 times greater than for the current approach.

4. CONCLUSIONS

An overview of the application of the agglomerated multigrid method to compressible �ow
simulations has been presented. Grid agglomeration has simpli�ed the application of multigrid
signi�cantly, allowing the routine use of this very e�cient solution acceleration scheme. The
computational time is typically reduced by around one order of magnitude compared to explicit
solvers, with only about a 30% increase in the memory usage. Some of the advantages related
to convergence speedup with hybrid methods have been touched upon. Future publications
will elaborate more on this issue, as well as focusing on the signi�cant improvements in
solution quality that result from the application of such meshes.
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